

DNA Test Report

BREED ANCESTRY

Labrador Retriever : 100.0%

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

GENETIC STATS

Predicted adult weight: **67 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-40727186 Swab number: 31220911009563

Fun Fact

We're pretty sure Labradors came from the island of Newfoundland, and many experts believe that the Newfoundland breed was developed in neighboring Labrador! By our calculations, there are 10 times as many Labradors in North America than there are people living in Labrador and Newfoundland. Test Date: August 2nd, 2024

embk.me/maxthewhiteii

embark

LABRADOR RETRIEVER

The Labrador Retriever has been the most popular AKC breed in the United States every year for the past 25 years. Their origins have been traced to the St. John's dog, named for the capital city of the Canadian province "Newfoundland and Labrador." The St. John's was developed from imported European dogs for fishing and hunting on the island of Newfoundland in the 18th century. During the 19th century St John's were bred in England and developed into the Labradors we know and love. Labradors were recognized as a breed by the British Kennel Club in 1903 and by the AKC in 1917. With their friendly dispositions and weatherproof build, they are terrific family dogs and outdoor companions. Most Labradors are very active with an appetite to match, and need plenty of exercise. Labradors often love to swim. Their double-coated weather-resistant fur can cause heavy shedding. Great hunting dogs and popular household companions, Labrador Retrievers are also employed as guide dogs and search-and-rescue dogs.

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

MATERNAL LINE

Through Max's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

HAPLOTYPE: A400

Part of the A1a haplogroup, this haplotype occurs most frequently in mixed breed dogs.

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

PATERNAL LINE

Through Max's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A2b

A2b appears to have split a few times in succession, which means that some of the Central Asian male ancestors of this lineage went their separate ways before their respective Y chromosomes made their rounds. There is not much diversity in this lineage, meaning that it has only begun to take off recently. Two iconic breeds, the Dachshund and Bloodhound, represent this lineage well. Over half of Rottweilers are A2b, as are the majority of Labrador Retrievers and Cavalier King Charles Spaniels. While A2a is restricted mostly to East Asia, this paternal line is also found among European breeds.

HAPLOTYPE: Hc.17

Part of the A2b haplogroup, this haplotype occurs most frequently in mixed breed dogs.

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

RESULT

embark

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype.

K Locus (CBD103)

The K Locus **K**^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the **K**^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one **K**^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the **k**^y**k**^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as **K**^B**k**^y may be brindle rather than black or brown.

No dark hairs anywhere (ee)

Not expressed (K^Bk^y)

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any pigmented hair likely white or cream (Dilute Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (atat)

Not expressed (DD)

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

TRAITS: COAT COLOR (CONTINUED)

TRAIT	RESULT
Cocoa (HPS3)	
Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the Nco genotype will produce black pigment, but can pass the co allele on to their puppies. Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the Bb or BB genotypes at the B locus.	No co alleles, not expressed (NN)
B Locus (TYRP1)	
Dogs with two copies of the b allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the b allele will produce black pigment, but can pass the b allele on to their puppies. E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".	Likely black colored nose/feet (Bb)
Saddle Tan (RALY)	
The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus a ^t allele, so dogs that do not express a ^t are not influenced by this gene.	Not expressed (II)
S Locus (MITF)	
The S Locus determines white spotting and pigment distribution. MITF controls where pigment is	

produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

Registration:

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

No merle alleles (mm)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Panda White Spotting

Panda White Spotting originated in a line of German Shepherd Dogs and causes a mostly symmetrical white spotting of the head and/or body. This is a dominant variant of the KIT gene, which has a role in pigmentation.

Dogs with one copy of the I allele will exhibit this white spotting. Dogs with two copies of the I allele have never been observed, as two copies of the variant is suspected to be lethal to the developing embryo. Dogs with the **NN** result will not exhibit white spotting due to this variant.

Not expected to display Panda pattern (NN)

RESULT

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

Likely short or midlength coat (ShSh)

DNA Test Report Test Date: August 2nd, 2024 embk.me/maxthewhiteii TRAITS: OTHER COAT TRAITS (CONTINUED) RESULT TRAIT Shedding (MC5R) Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are Likely heavy/seasonal heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus shedding (CT) and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene. Coat Texture (KRT71) Dogs with a long coat and at least one copy of the T allele have a wavy or curly coat characteristic of Likely straight coat Poodles and Bichon Frises. Dogs with two copies of the ancestral C allele are likely to have a straight coat, (CC) but there are other factors that can cause a curly coat, for example if they at least one F allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the T allele but still have straight coats.

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Registration:

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

Likely medium or long

muzzle (CC)

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

RESULT

embark

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the **NI** genotype will have an intermediate leg length, while dogs with the **NN** result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

Not indicative of chondrodysplasia (normal leg length) (NN)

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog. Less likely to have blue eyes (NN)

Likely normal muscling (CC)

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1) The I allele is associated with smaller body	size.	Intermediate (NI)
Body Size (IGFR1) The A allele is associated with smaller body	/ size.	Larger (GG)
Body Size (STC2) The A allele is associated with smaller body	/ size.	Larger (TT)
Body Size (GHR - E191K) The A allele is associated with smaller body	/ size.	Larger (GG)
Body Size (GHR - P177L) The T allele is associated with smaller body	v size.	Larger (CC)

Fembark

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
TRAITS: PERFORMANCE	E	
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with at	ecially tolerant of low oxygen environments (hypoxia), such as those t least one A allele are less susceptible to "altitude sickness." This breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC)		
dogs with no copies of the mutation (likely to have high food motivation, wi percentage, and be more prone to ob	und primarily in Labrador and Flat Coated Retrievers. Compared to (NN), dogs with one (ND) or two (DD) copies of the mutation are more hich can cause them to eat excessively, have higher body fat esity. Read more about the genetics of POMC, and learn how you can st (https://embarkvet.com/resources/blog/pomc-dogs/). We est.	Likely to be more food motivated (ND)

Fembark

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

HEALTH REPORT

How to interpret Max's genetic health results:

If Max inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Max for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 274 genetic health risks we analyzed, we found 1 result that you should learn about.

Notable results (1)

Exercise-Induced Collapse, EIC

Clear results

Breed-relevant (24)

Other (248)

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Max, and may influence his chances of developing certain health conditions.

Exercise-Induced Collapse, EIC (DNM1)	Notable
Alexander Disease (GFAP)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Centronuclear Myopathy, CNM (PTPLA)	Clear
Congenital Dyserythropoietic Anemia and Polymyopathy (EHPB1L1, Labrador Retriever Variant)	Clear
Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)	Clear
Copper Toxicosis (Accumulating) (ATP7B)	Clear
Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)	Clear
O Degenerative Myelopathy, DM (SOD1A)	Clear
Ehlers-Danlos Syndrome (EDS) (COL5A1, Labrador Retriever Variant)	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV39H2)	Clear
 Laryngeal Paralysis and Polyneuropathy (CNTNAP1, Leonberger, Saint Bernard, and Labrador Retriever variant) 	Clear
Macular Corneal Dystrophy, MCD (CHST6)	Clear
Muscular Dystrophy-Dystroglycanopathy (LARGE1, Labrador Retriever Variant)	Clear
Myotonia Congenita (CLCN1 Exon 19, Labrador Retriever Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
BREED-RELEVANT RESU	LTS	
Progressive Retinal Atrophy, prcd	(PRCD Exon 1)	Clear
Pyruvate Kinase Deficiency (PKLR)	Exon 7, Labrador Retriever Variant)	Clear
Skeletal Dysplasia 2, SD2 (COL11A)	2, Labrador Retriever Variant)	Clear
Stargardt Disease (ABCA4 Exon 28	3, Labrador Retriever Variant)	Clear
🔗 Ullrich-like Congenital Muscular D	ystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
⊘ Urate Kidney & Bladder Stones (SL	.C2A9)	Clear
X-Linked Myotubular Myopathy (M	TM1, Labrador Retriever Variant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

SS44645401

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Max. Review any increased risk or notable results to understand his potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
 Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant) 	Clear
Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Cardiomyopathy and Juvenile Mo	ortality (YARS2)	Clear
🔗 Cerebellar Hypoplasia (VLDLR, E	urasier Variant)	Clear
🔗 Chondrodysplasia (ITGA10, Norw	regian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADA	AMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2,	Nova Scotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUBN	I Exon 8, Beagle Variant)	Clear
Cobalamin Malabsorption (CUBN	I Exon 53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)		Clear
Complement 3 Deficiency, C3 De	eficiency (C3)	Clear
Ocongenital Cornification Disorde	er (NSDHL, Chihuahua Variant)	Clear
Ocongenital Hypothyroidism (TPO), Rat, Toy, Hairless Terrier Variant)	Clear
Ocongenital Hypothyroidism (TPO), Tenterfield Terrier Variant)	Clear
Congenital Hypothyroidism with	Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Ocongenital Hypothyroidism with	Goiter (SLC5A5, Shih Tzu Variant)	Clear
Congenital Macrothrombocytope	enia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Ongenital Muscular Dystrophy ((LAMA2, Italian Greyhound)	Clear
Ocongenital Myasthenic Syndrom	e, CMS (COLQ, Golden Retriever Variant)	Clear
⊘ Congenital Myasthenic Syndrom	e, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
Registration: American Kennel Club (AKC)	embark.	

Registration: American Kennel Club (AKC) SS44645401

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Ongenital Myasthenic Syndrome, CMS (C	HRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness (LRI	IT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness (RP	E65, Briard Variant)	Clear
Ocpper Toxicosis (Attenuating) (ATP7A, Lal	brador Retriever)	Clear
Opper Toxicosis (Attenuating) (RETN, Lab	orador Retriever)	Clear
Craniomandibular Osteopathy, CMO (SLC3)	7A2)	Clear
Craniomandibular Osteopathy, CMO (SLC3)	7A2 Intron 16, Basset Hound Variant)	Clear
Oystinuria Type I-A (SLC3A1, Newfoundland	d Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Australian Ca	ttle Dog Variant)	Clear
🔗 Cystinuria Type II-B (SLC7A9, Miniature Pir	nscher Variant)	Clear
Oarier Disease (ATP2A2, Irish Terrier Varian	nt)	Clear
Oay Blindness (CNGB3 Deletion, Alaskan N	1alamute Variant)	Clear
Oay Blindness (CNGA3 Exon 7, German She	epherd Variant)	Clear
Oay Blindness (CNGB3 Exon 6, German Sho	orthaired Pointer Variant)	Clear
O Deafness and Vestibular Syndrome of Dob	ermans, DVDob, DINGS (MYO7A)	Clear
Oemyelinating Polyneuropathy (SBF2/MTR	RM13)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3, Ca	ane Corso Variant)	Clear
O Diffuse Cystic Renal Dysplasia and Hepatic	Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Desistration: American Kannel Club (AKC)		

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Dilated Cardiomyopathy, DCM (RBM20, Schnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1	(PDK4, Doberman Pinscher Variant 1)	Clear
Oilated Cardiomyopathy, DCM2	(TTN, Doberman Pinscher Variant 2)	Clear
O Disproportionate Dwarfism (PR	KG2, Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (F	FAM83H Exon 5)	Clear
Opstrophic Epidermolysis Bullo	sa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
Opstrophic Epidermolysis Bullo	sa (COL7A1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHE	01 Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EO	AD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia (S	SEL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Dobe	rman Pinscher Variant)	Clear
🔗 Enamel Hypoplasia (ENAM Dele	etion, Italian Greyhound Variant)	Clear
Senamel Hypoplasia (ENAM SNP,	Parson Russell Terrier Variant)	Clear
Episodic Falling Syndrome (BC/	4N)	Clear
Sactor VII Deficiency (F7 Exon 5	5)	Clear
Sactor XI Deficiency (F11 Exon 7	7, Kerry Blue Terrier Variant)	Clear
Samilial Nephropathy (COL4A4	Exon 3, Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4	Exon 30, English Springer Spaniel Variant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

SS44645401

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
🔗 Fanconi Syndrome (FAN1, Basenji Variant)		Clear
Setal-Onset Neonatal Neuroaxonal Dystroph	y (MFN2, Giant Schnauzer Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2E	3 Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA2E	3 Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe disease	e (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gierk	ke Disease, GSD IA (G6PC1, German Pinscher Variant)	Clear
Glycogen Storage Disease Type IA, Von Gierk	ke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD IIIA	(AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Phospho and English Springer Spaniel Variant)	fructokinase Deficiency, PFK Deficiency (PFKM, Whippe	t Clear
Glycogen storage disease Type VII, Phospho Wachtelhund Variant)	fructokinase Deficiency, PFK Deficiency (PFKM,	Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portugues	se Water Dog Variant)	Clear
🔗 GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inc	ı Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Alaskan H	Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese Chin V	ariant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)		Clear
Golden Retriever Progressive Retinal Atroph	y 1, GR-PRA1 (SLC4A3)	Clear
Goniodysgenesis and Glaucoma, Pectinate L	igament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German Shepherd	Variant 1)	Clear

Registration: American Kennel Club (AKC) SS44645401

SS44645401

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Hemophilia A (F8 Exon 1, German Shepherd V	/ariant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
🔗 Hemophilia B (F9 Exon 7, Rhodesian Ridgeba	ck Variant)	Clear
Hereditary Ataxia (PNPLA8, Australian Sheph	erd Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration (F	RAB24, Old English Sheepdog and Gordon Setter Variant) Clear
Hereditary Cataracts (HSF4 Exon 9, Australian	n Shepherd Variant)	Clear
Hereditary Cataracts (FYCO1, Wirehaired Poir	nting Griffon Variant)	Clear
Hereditary Cerebellar Ataxia (SELENOP, Belgi	an Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM83G	, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1, Ro	ottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 Int	ron 4, Greyhound Variant)	Clear
Hereditary Vitamin D-Resistant Rickets (VDR)	Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, Weima	raner Variant)	Clear
🔗 Hypophosphatasia (ALPL Exon 9, Karelian Be	ar Dog Variant)	Clear
O Ichthyosis (NIPAL4, American Bulldog Variant	:)	Clear
Ichthyosis (ASPRV1 Exon 2, German Shepher	d Variant)	Clear
Registration: American Kennel Club (AKC)	≻ embark	

SS44645401

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Ichthyosis (SLC27A4, Great Dane Variant)		Clear
🔗 Ichthyosis, Epidermolytic Hyperkeratosis (K	RT10, Terrier Variant)	Clear
O Ichthyosis, ICH1 (PNPLA1, Golden Retriever	Variant)	Clear
Ichthyosis, ICH2 (ABHD5, Golden Retriever V	Variant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (BIN1)		Clear
O Inherited Selected Cobalamin Malabsorptio	n with Proteinuria (CUBN, Komondor Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF4 re	etrogene - CFA12)	Clear
O Intestinal Lipid Malabsorption (ACSL5, Aust	ralian Kelpie)	Clear
Sunctional Epidermolysis Bullosa (LAMA3 Ex	xon 66, Australian Cattle Dog Variant)	Clear
Sunctional Epidermolysis Bullosa (LAMB3 Ex	xon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Suvenile Laryngeal Paralysis and Polyneurop	oathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
S L-2-Hydroxyglutaricaciduria, L2HGA (L2HGD	H, Staffordshire Bull Terrier Variant)	Clear
S Lagotto Storage Disease (ATG4D)		Clear
🚫 Laryngeal Paralysis (RAPGEF6, Miniature Bu	III Terrier Variant)	Clear
S Late Onset Spinocerebellar Ataxia (CAPN1)		Clear
Registration: American Kennel Club (AKC)	H embark	

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Late-Onset Neuronal Ceroid Lipofuscinos	is, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (LPN1, ARH)	GEF10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Standar	d Schnauzer Variant)	Clear
🔗 Ligneous Membranitis, LM (PLG)		Clear
SGCD, B Limb Girdle Muscular Dystrophy (SGCD, B	oston Terrier Variant)	Clear
SGC Limb-Girdle Muscular Dystrophy 2D (SGC	A Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Sundehund Syndrome (LEPREL1)		Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
 Medium-Chain Acyl-CoA Dehydrogenase Variant) 	Deficiency, MCADD (ACADM, Cavalier King Charles Spanie	el Clear
Methemoglobinemia (CYB5R3, Pit Bull Te	rrier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft Coate	d Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo Sy	ndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfilip Variant)	po Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund	Clear

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
 Mucopolysaccharidosis Type IIIA, Sanfilipp Huntaway Variant) 	oo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand	Clear
Mucopolysaccharidosis Type VI, Maroteau Variant)	x-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinsch	ner Clear
Mucopolysaccharidosis Type VII, Sly Synd	rome, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Synd	rome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Multiple Drug Sensitivity (ABCB1)		Clear
Muscular Dystrophy (DMD, Cavalier King C	harles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Golden Retriev	er Variant)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTS	iL2)	Clear
O Myasthenia Gravis-Like Syndrome (CHRN	E, Heideterrier Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 23, Aust	ralian Cattle Dog Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 7, Miniat	ture Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund V	'ariant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman F	Pinscher Variant)	Clear
Nemaline Myopathy (NEB, American Bulld	og Variant)	Clear
Neonatal Cerebellar Cortical Degeneration	n (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizures, N	IEWS (ATF2)	Clear
Neonatal Interstitial Lung Disease (LAMP3	3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rottv	veiler Variant)	Clear

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Neuroaxonal Dystrophy, NAD (TECPR2, Span	ish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PP	T1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TP	P1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CL	N5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CL	N5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CL	N6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MF	SD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CL	N8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CL	N8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CL	N8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebellar / Variant) 	Ataxia, NCL4A (ARSG Exon 2, American Staffordshire	Terrier Clear
Oculocutaneous Albinism, OCA (SLC45A2 Ex	kon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, S	mall Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoye	ed Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle V	ariant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle V	/ariant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachs	shund Variant)	Clear

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Osteogenesis Imperfecta (COL1A1, Golden F	Retriever Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear
Pachyonychia Congenita (KRT16, Dogue de	Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMDS	(AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karelian	n Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Scott	Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swedish	n Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Alas	kan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (STK36, Aus	tralian Shepherd Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 Ex	on 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAMTS17 E	xon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10 I	Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10 I	Exon 9, Norwegian Elkhound Variant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

SS44645401

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
 Primary Open Angle Glaucoma and Variant) 	Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei	Clear
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy (IFT122	2 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy 5, PRA	5 (NECAP1 Exon 6, Giant Schnauzer Variant)	Clear
Progressive Retinal Atrophy, Bardet	t-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
Progressive Retinal Atrophy, CNGA	(CNGA1 Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (F	PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, PRA1 ((CNGB1)	Clear
Progressive Retinal Atrophy, PRA3 ((FAM161A)	Clear
Progressive Retinal Atrophy, rcd1 (F	PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (F	PDE6A)	Clear
Proportionate Dwarfism (GH1 Exon	5, Chihuahua Variant)	Clear
Protein Losing Nephropathy, PLN (N	NPHS1)	Clear
Pyruvate Dehydrogenase Deficienc	y (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	Exon 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR E	Exon 7, Pug Variant)	Clear

Registration: American Kennel Club (AKC) SS44645401

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary	v Disease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and No	odular Dermatofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Nerv	ve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Sensory Neuropathy (FAM134B, Bo	order Collie Variant)	Clear
Severe Combined Immunodeficien	cy, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficien	ncy, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, Er	nglish Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease	e, SPAID, Shar-Pei Fever (MTBP)	Clear
Skin Fragility Syndrome (PKP1, Che	esapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alp	pine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with Myoky	mia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerebe	Ilar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebe	Ilar Ataxia 2 (ATP1B2)	Clear
Succinic Semialdehyde Dehydroge	enase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, ,	American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, I	Basset Hound Variant)	Clear
O Thrombopathia (RASGRP1 Exon 8, I	Landseer Variant)	Clear
Registration: American Kennel Club (AKC)	Fembark	

SS44645401

DNA Test Report	Test Date: August 2nd, 2024	embk.me/maxthewhiteii
OTHER RESULTS		
Trapped Neutrophil Syndrome, TNS (VPS13B))	Clear
Illrich-like Congenital Muscular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestibular Syndrom	e (PTPRQ Exon 39, Doberman Pinscher)	Clear
⊘ Von Willebrand Disease Type I, Type I vWD (\	/WF)	Clear
⊘ Von Willebrand Disease Type II, Type II vWD	(VWF, Pointer Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vWI	0 (VWF Exon 4, Terrier Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vWI) (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vWI) (VWF Exon 7, Shetland Sheepdog Variant)	Clear
⊘ X-Linked Hereditary Nephropathy, XLHN (CO	L4A5 Exon 35, Samoyed Variant 2)	Clear
⊘ X-Linked Progressive Retinal Atrophy 1, XL-F	RA1 (RPGR)	Clear
⊘ X-linked Severe Combined Immunodeficiend	cy, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
⊘ X-linked Severe Combined Immunodeficiend	cy, X-SCID (IL2RG, Corgi Variant)	Clear
⊘ Xanthine Urolithiasis (XDH, Mixed Breed Var	ant)	Clear
🧭 β-Mannosidosis (MANBA Exon 16, Mixed-Br	eed Variant)	Clear
Mast Cell Tumor		No result
Registration: American Kennel Club (AKC)	X embark	

SS44645401

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

HEALTH REPORT

On the second second

Exercise-Induced Collapse, EIC

Max the White II inherited one copy of the variant we tested for Exercise-Induced Collapse, EIC

What does this result mean?

This variant should not impact Max's health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Max is unlikely to develop this condition due to this variant because he only has one copy of the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of his offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Exercise-Induced Collapse, EIC?

EIC has been linked to a mutation in the DNM1 gene, which codes for the protein dynamin. In the neuron, dynamin trucks neurotransmitter-filled vesicles from the cell body, where they are generated, to the dendrites. It is hypothesized in dogs affected with EIC, the mutation in DNM1 disrupts efficient neurotransmitter release, leading to a cessation in signalling and EIC.

When signs & symptoms develop in affected dogs

Signs develop in juvenile dogs, typically before 3 years of age.

How vets diagnose this condition

Genetic testing, clinical signs, and muscle biopsy can be used to diagnose this disorder.

How this condition is treated

Dogs with this condition are otherwise normal and healthy, though some severely affected dogs have died during an episode. The factors determining the severity of an episode on a given day or in a given dog is unknown.

Actions to take if your dog is affected

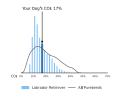
• Minimizing or eliminating intense exercise is the best way we currently know to prevent complications from this condition.

DNA Test Report

Test Date: August 2nd, 2024

embk.me/maxthewhiteii

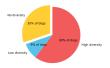
embark


INBREEDING AND DIVERSITY

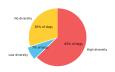
CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.


RESULT

No Diversity


17%

How common is this amount of diversity in purebreds:

Low Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.